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Abstract—Chlorophyll derivative possessing a trifluoroacetyl group at the 3-position was synthesized as a new chemosensor for
alcohols and amines. Intense Q, peak of the trifluoroacetyl-chlorin (701 nm in CHCl;) showed blue shifts to 667 nm in MeOH
and 665 nm in n-BuNH, due to the formation of the corresponding hemiacetal and hemiaminal with visible color changes. Thermo-
dynamic parameters for the complexation between trifluoroacetyl-chlorin and n-BuNH, in CDCI; were determined to be
AH = —48kJ mol~! and AS = —147 J K~! mol~!. Ratiometric fluorescence sensing of n-BuNH, in THF was also demonstrated.

© 2006 Elsevier Ltd. All rights reserved.

Development of chemically functional dyes is of current
interest due to their possible application in the field of
analytical chemistry, and many chromo/fluororeceptors
for the selective recognition of biologically important
species have been synthesized.! However, there is no re-
port on chemosensors using a chlorophyll derivative as
their main dye unit, to the best of our knowledge. Chlo-
rophyll-a is a representative dye molecule in natural
photosynthesis,? and has an intense Q, peak at around
660 nm in its monomeric state. During our synthetic
studies of chlorophyll-a derivatives,> we found that the
modification of the substituents on a chlorin macrocycle
strongly affected the position of the Q, peak. For
example, reduction of the C3-formyl to hydroxymethyl
group of methyl pyropheophorbide-d caused a large
blue-shift of the Q, peak from 695 to 662nm in
CH,Cl,.* Therefore, introduction of a suitable func-
tional group on the chlorin macrocycle is expected to
lead to the development of new chemosensors, which
enable guest sensing at a longer-wavelength region with
less interference from environments and impurities. A
trifluoroacetyl group is selected as an example of this
purpose. Although trifluoroacetophenone derivatives
have been exclusively used as ionophores for carbon-
ate-selective electrodes,>° recent reports include applica-
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tions as sensing components toward alcohols,” amines,®
anions,” or amino acids.'® The functional group can
reversibly form adducts with those analytes, and styl-
bene,’* azobenzene,® pyrene,'®® and dansyl units’® have
been used as chromo/fluorogenic dye moieties. In this
letter, we report the synthesis of a chlorophyll derivative
possessing the 3-trifluoroacetyl group. Its hemiacetal
and hemiaminal formation in solution was investigated
by NMR and vis spectroscopies and its fluorescent
ratiometric sensing for n-BuNH, was demonstrated in
THF.!!

Synthesis of trifluoroacetyl-chlorin 2 and its sensing
mechanism are outlined in Scheme 1. The 3-formyl
group of methyl pyropheophorbide-d'? was treated with
TMSCF; and the resulting silyl ether was cleaved by aq
HCI'3 to give chlorin 1 in 46% yield. Oxidation of the
3'-hydroxy group in 1 to the 3-carbonyl group in 2 was
performed by PryNRuO, and 4-methylmorpholine-N-
oxide.'* The trifluoroacetyl group of 2 can form adducts
as its hemiacetal with an alcohol (3a), as its hemiaminal
with a primary (or secondary) amine (3b), or as its zwit-
ter ion with a tertiary amine (3c). Complete conversion
from 2 to 3a in CD;0OD was confirmed by their 'H
and ’F NMR spectra. For example, 5- and 10-protons
of 2 appeared at 9.69 and 9.29 ppm, respectively, in
CDCl;, and turned into pairs of signals at 10.29/10.28
and 9.36/9.35 ppm in CDCl;-CD;0D (1:1, v/v) due to
the formation of a 1:1 epimeric mixture of 3_R/S-3a.
Similarly, a single '"F signal of 2 (—74.24 ppm in
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Scheme 1. Reagents and conditions: (a) (i) TMSCF;, BuyNF-3H,0,
THF, rt, 5 min, (ii) 10% aq HCI, THF, rt, 2 h, 46%; (b) PryNRuOy, 4-
methylmorpholine-N-oxide, CH,Cl,, rt, 3 h, 47%.

CDCl;3) changed to a pair (1:1) of signals at
—84.08/—84.09 ppm in CDCl;-CD;0OD, which were
assigned to the 3'-CF; of 3!-epimerically mixed 3a.

When n-BuNH, was added to a solution of 2 in CDCl;,
the "H NMR spectrum showed signals of both trifluoro-
acetyl-chlorin 2 and its hemiaminal 3b. Figure 1 shows
the '"H NMR spectra of three kinds of meso-protons
of 2 in the presence of 10 equiv n-BuNH, in CDCl; mea-
sured at various temperatures. Trifluoroacetyl form was
dominant at 40 °C (ratio of 2/3b, r=7.7/1), but the
value of r gradually decreased at a lower temperature
and completely changed to its hemiaminal form at
—40 °C (r = 0/1).'> Thermodynamic parameters for the
complexation were calculated as AH = —48 kJ mol ™!
and AS=—147J K 'mol™! based on the van’t Hoff
plot as shown in Figure 2.!6

Figure 3 shows the electronic absorption spectra of
various solutions of 2 and the absorption maxima are
summarized in Table 1. The Q, peak maximum of 2 at
696 nm in THF moved to 667 nm in MeOH with a vis-
ible color change from brown to purple. The hemiacetal-
ization of 2 with bulky 2-PrOH was so slow at room
temperature that the trifluoroacetyl form still existed
(about 20%) after standing for 1 day.!”
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Figure 1. Selected region of the 'H NMR spectra of chlorin 2 in the
presence of 10 equiv n-BuNH, in CDClj; at (a) 40, (b) 0, (c) —20, and
(d) —40 °C. meso-Protons of the trifluoroacetyl form 2 are indicated by
asterisk ().
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Figure 2. van’t Hoff plot of the equilibrium between trifluoroacetyl
chlorin 2 and its hemiaminal 3b. Association constants (K, = [3b]/[2]-
[n-BuNH,] in CDCl3) were calculated by integration values of their 'H
NMR peaks at various temperatures.
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Figure 3. Electronic absorption spectra of chlorin 2 in THF (solid
thick line), MeOH (solid thin line), and 2-PrOH (dotted line).
[2]=1.0x 107> M. The spectra in THF and MeOH were measured
just after preparation of their samples and that in 2-PrOH was done
after standing for 1 day at room temperature.
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Table 1. Absorption maxima (Ayax/nm) of various solvents of 2

Solvent Soret Ox Oy
CHCl 393, 420 524, 562 701
THF 391, 422 520, 558 696
Toluene 395, 424 525, 563 701
CH;CN 390, 408 517, 555 693
2-PrOH 408 509, 541 666, 697
MeOH 407 508, 539 667
n-BuNH, 409 508, 539 665
Et;N 407 507, 536 665

Changes in the electronic absorption and fluorescence
emission spectra of 2 by addition of n-BuNH, in THF
are shown in Figure 4. The hemiaminal formation
required several hours in THF, which is in contrast to
the rapid equilibrium in CDCl;. The spectra after reach-
ing the equilibrium showed Qy peak shift from 696 to
665 nm with several isosbestic points including 422
and 676 nm. The association constant (K,) was deter-
mined to be 7.8 x 10> M~ at 20 °C,'8 much larger than
the K, value of 8 M~! in CDCl;. Polar THF would
stabilize the OH/NH groups of hemiaminal 3b more
than CDCl; does. On the other hand, the K, value
between 4-dimethylamino-4’-trifluoroacetyl-azobenzene
and n-BuNH, was reported to be 7.9x10°M~' in
THF.% In spite of the steric hindrance of 2-CHj; and
5-H on the chlorin ring, the trifluoroacetyl group of 2
showed this relatively strong binding ability.'” When
excited at 422 nm, a fluorescence intensity at 718 nm
decreased with a concomitant increase of the 668 nm
emission, which resulted in the ratiometric plot shown in
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Figure 4. (a) Electronic absorption and (b) fluorescence emission
spectral changes of chlorin 2 by addition of n-BuNH, in THF.
[2]= 1.0 x 107> M. Each sample was measured after standing for 24 h
at room temperature in the dark. Excited wavelength, 422 nm. Inserted
plot represents the relation between the amount of added n-BuNH,
and the ratio of fluorescence intensity at 668 and 718 nm.

Figure 4b. The K, value was calculated to be 8.1 x
10°M~! following the fluorescence intensity changes,
almost the same value based on the absorption spectra.

In summary, we demonstrated a first example of a chlo-
rophyll-based chemosensor. Colorimetric and fluores-
cent ratiometric sensing of n-BuNH, was performed in
THF, together with the determination of thermo-
dynamic parameters of the equilibrium in CDCls. Intro-
duction of trifluoroacetyl group to other positions on
the chlorin macrocycle and the synthesis of bacterio-
chlorin-based sensors are in progress.
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